Naturally occurring radioactive materials (NORM) in the Sedgwick Museum Collections

Sedgwick Museum of Earth Sciences

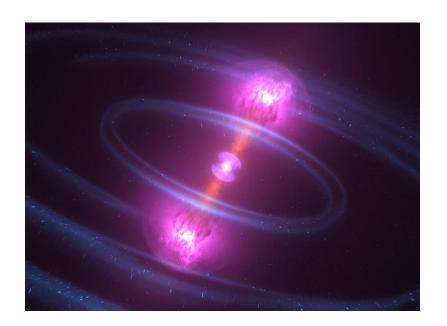
Dan Pemberton
Collections Manager & RPS for Museum Collections
Sedgwick Museum of Earth Sciences
University of Cambridge
dsp30@cam.ac.uk

Some Sedgwick Museum facts

- Two sites (Public Museum & Collections Research Centre)
- Fossils = c. 1,000,000
- Rocks = c. 300,000
- Minerals = c. 50,000
- Microscope slides = 250,000
- Archive = $25m^3$
- Provides a public museum
- Supports internal & external research and teaching

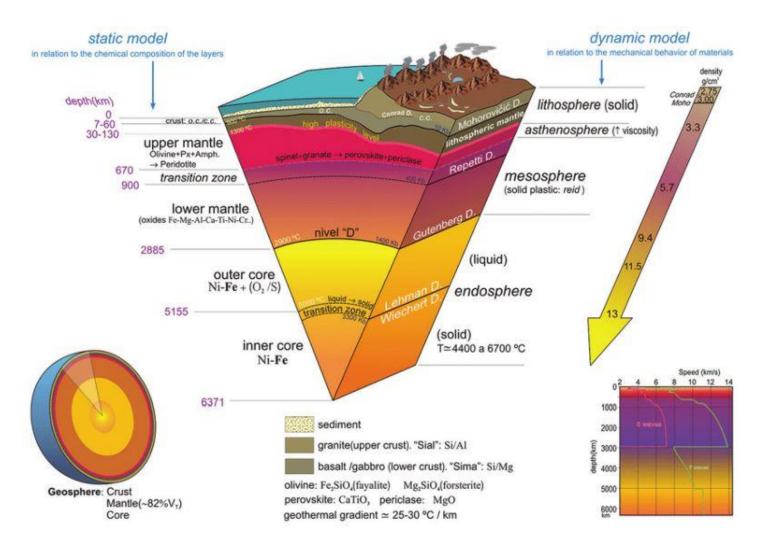
What things in the Museum collections are radioactive?

Fossils Rocks Minerals

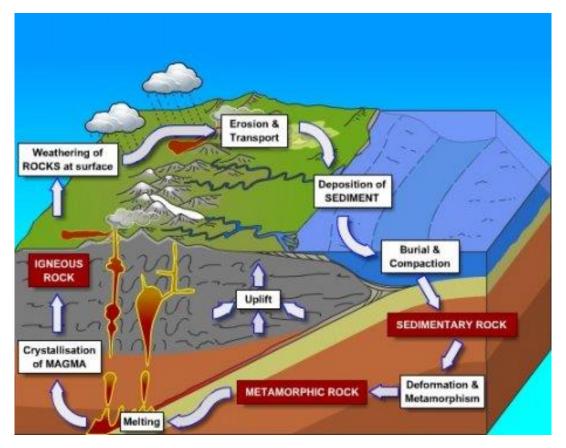

Lowest activity (1-10's of cps on contamination monitors, barely register on 'Type-R' dose-rate monitor)

Highest activity (1000's of cps on contamination monitors, up to c. 150-200 μ Sv/h on 'Type-R' doserate monitor.)

The commonest radioactive elements in our NORMs are probably uranium, thorium and their decay products, but where do they come from?



Supernovas?


Neutron-star collisions?

The structure of the Earth

After Gervilla, F., González Jiménez, J. M., Hidas, K., Marchesi, C., & Piña, R. (2019).

How do elements like uranium & thorium get into rocks, minerals & fossils?

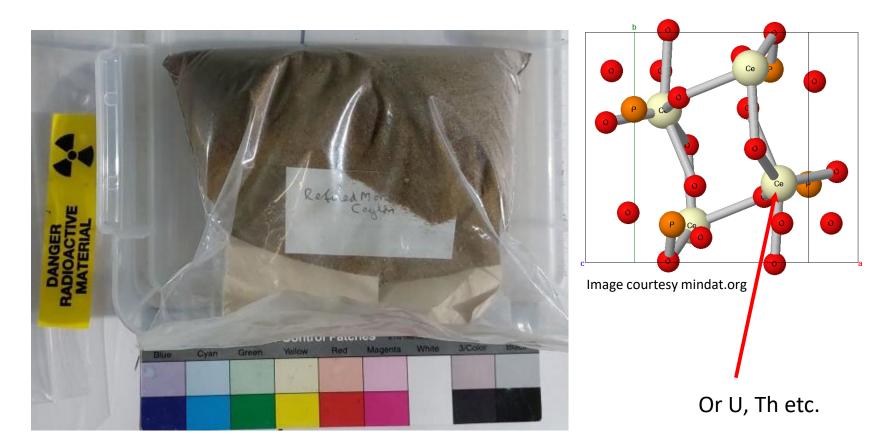
Elements such as uranium & thorium are leached from the Earth's mantle and concentrated in the Earth's crust. This happens through a rock recycling process known as the 'rock cycle'. These elements are not compatible with magma and so tend to fraction out into rocks such as pegmatites, or enter hydrothermal systems and form ore-bodies.

 $Image\ courtesy\ Geological\ Society\ of\ Glasgow.$

Table 1. Global ranges of uranium abundance in common rocks and waters

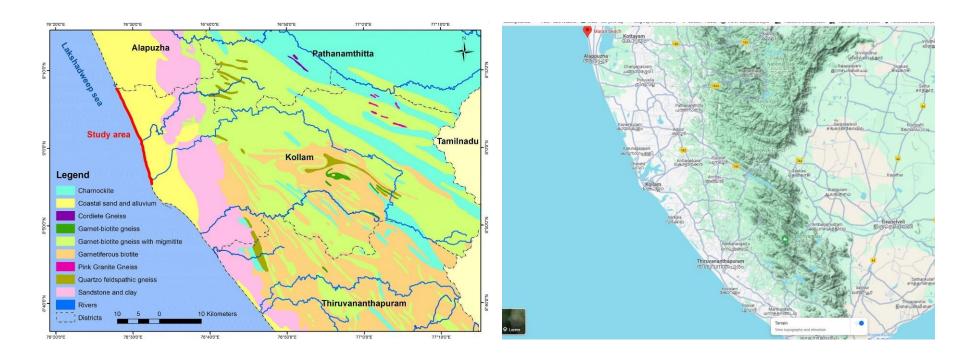
Igneous Rocks		Sedimentary Rocks	
Syenites and phonolites	0.1-26 ppm	Shales, clays, mudrocks	1-5 ppm
Granites and rhyolites	2-50 ppm	Black shales (organic-rich)	2-1250 ppm
Intermediate rocks	1-6 ppm	Phosphorite-black shales	≤700 ppm
Basalts and other mafic rocks	0.1-1 ppm	Sandstones	0.5-4 ppm
Ultramafic	0.001-1 ppm	Limestones, dolomites	<0.1-9 ppm
		Coals, lignites, peats	1-6000 ppm
Metamorphic Rocks		Pure evaporites	<0.1 ppm
Low-grade	<1-5 ppm	Water	
Medium-grade	<1-5 ppm	Oceanic seawater	0.3-3 ppb
High-grade	<1-7 ppm	Groundwater	<0.1-460 ppb

[based on data from Wedepohl, 1978a; Bowie, 1979; Basham et al., 1989; Ball and Milodowski, 1989; Basham and Kemp, 1993; Hobday and Galloway, 1999; U.S. Geological Survey, 1997;

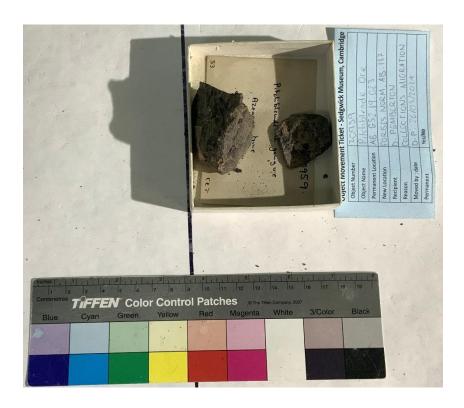

CAMSM 123619 Lovchoritte pegmatite from the Kola Peninsula NW Russia

A coarse-grained igneous rock with the exotic thorium containing mineral lovchoritte $(\Box,Ca,Na)_3(Ca,REE)_4Ti(Si_2O_7)_2[H_2O,OH,F]_4 \cdot H_2O$

Dose-rate 1.5 μ Sv/h at 0cm, 0 μ Sv/h at 30cm


CAMSM TN 4554 Monazite sand (concentrate) from Sri-Lanka

Monazite (Ce, LREE, Th, U, Ca)PO $_4$, is a cerium phosphate mineral where thorium or uranium may be substituted for cerium. This sand contains crystals of monazite weathered from certain igneous and metamorphic rocks. Mined as a 'placer deposit' e.g. beaches in India & Sri Lanka.


Dose-rate 45 μ Sv/h at 0cm, 1.5 μ Sv/h at 30cm.

Monazite sand beaches

Monazite sand often accumulates in beach sand (0.1-1.5%) in places like Kerala India (above), Sri-Lanka and Brazil (up to 90 μ Gy/h), where it has been weathered from igneous and metamorphic rocks in the hinterland.

CAMSM 70959 Uraninite (var. 'pitchblende') from Azegour Mine, Morocco

Uraninite UO₂ is a form of uranium oxide and one of the primary ores of uranium. It forms under hydrothermal conditions

Dose-rate at 0cm 28 μ Sv/h , 0.75 μ Sv/h at 30cm.

Formation of uranium ores

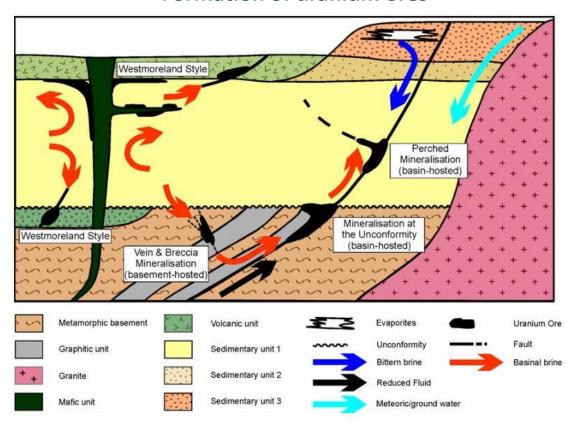


Figure 10: Mineral system model for unconformity-related uranium deposits.

Uranium is mobile when in an oxidised state, minerals such as uraninite form when uranium in oxidising hydrothermal fluids meets a reducing environment (e.g. by mixing with reducing fluids or migrating into a different rock type). Faults can form conduits between oxidising and reducing environments.

Why are some fossils radioactive?

Devonian (c.393,000,000 years old) fossil fish from the Orkneys. A few 10s of cps at surface

Dose-rate at 0cm <0.5 $\mu Sv/h$, 0 $\mu Sv/h$ at 30cm.

What is the source of the radioactivity?

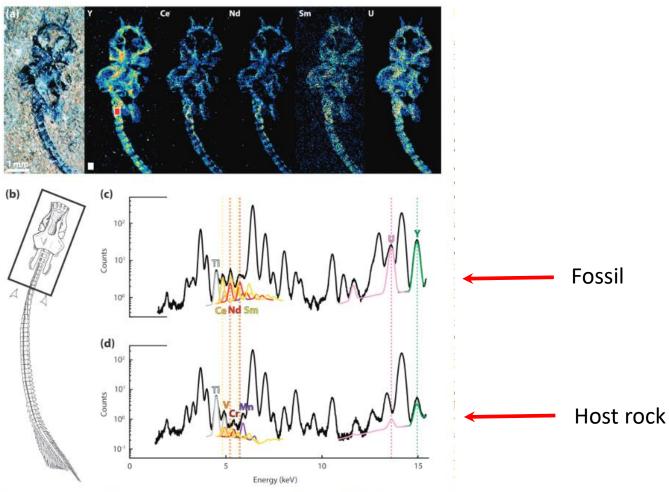


Figure 4: Synchrotron XRF mapping of trace elements in *Palaeospondylus gunni* (MNHN-GBP 92), an early vertebrate from the Middle Devonian (~390 Myr) of Scotland. (a) Light optical micrograph and distributions of yttrium; the REEs lanthanum, cerium, neodymium and samarium; and uranium that can be clearly mapped in this fossil (scan step: 30 × 30 μm², 28,231 pixels; distributions reconstructed from a full spectral decomposition of the data). (b) Reconstruction of the entire organism, with the box area corresponding to what is shown in (a). (c–d) Mean XRF spectra from the red (c) and white (d) box areas in the Y map (168 pixels), respectively characteristic of the fossil and the sedimentary matrix, showing contributions from transition metals and the elements mapped in (a).

A proposed model for the Orcadian lake environment

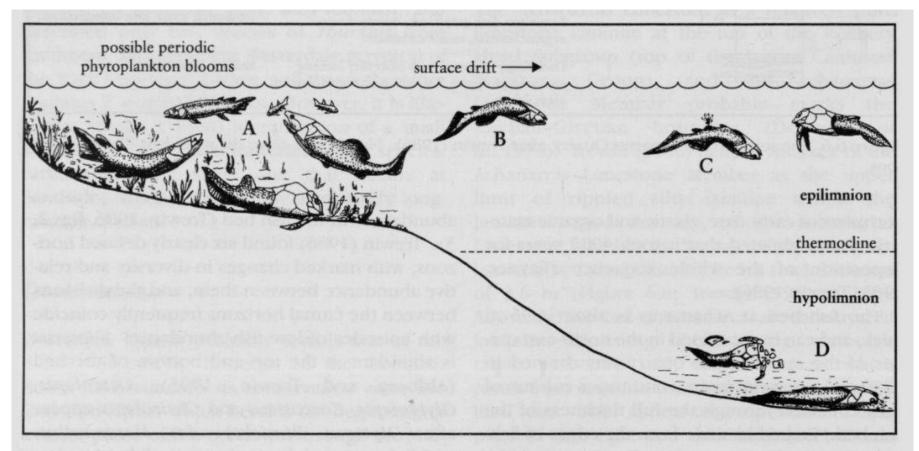


Figure 6.8 Particularly fossiliferous horizons with well-preserved fishes may result from mass mortality events induced by planktonic blooms. The axonic conditions extend throughout the shallow marginal areas (A); following this, carcasses drift into deeper water in a bloated conditions (B); after further decay (C), they sink through the thermocline and are preserved in laminites in the anoxic hypolimnion (D). The depth of the thermocline may have been no more than a few tens of metres (after Trewin, 1986).

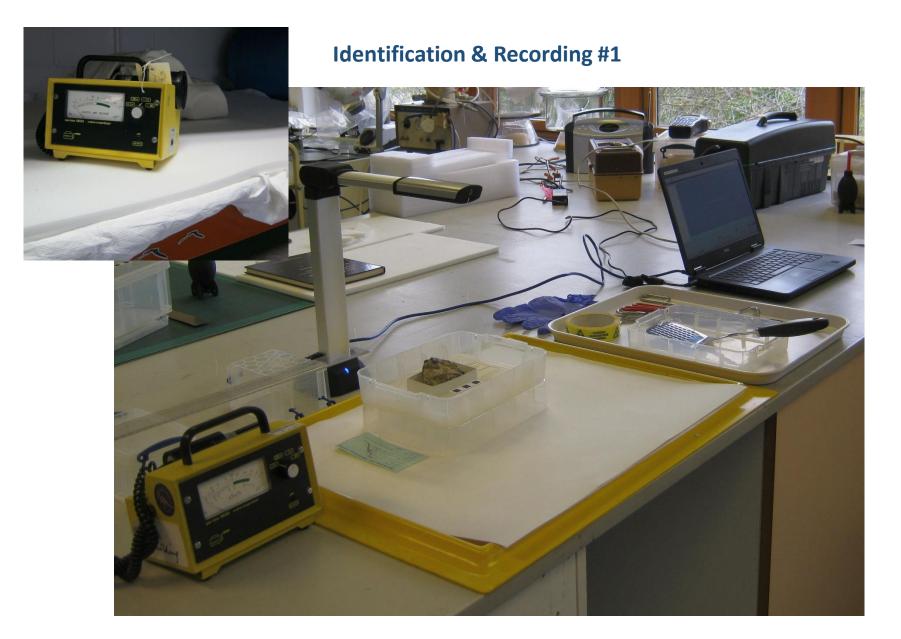
When and how did the fish become radioactive? #1

- According to BGS the fish beds, are rich in organic matter and contain up to 1,500 mg (1.5g) of U per kg
- BGS report uranium was present in the environment, weathered from basement & surrounding rocks that contained minerals such as monazite
- Uranium is mobile in oxidising environments and fixed in reducing environments
- It readily forms compounds with phosphate, some anaerobic reducing bacteria are capable of enzymatic uranium phosphate precipitation.
- Organic matter is an important sorbent for Uranium

When and how did the fish become radioactive? #2

- The fish died and sank to the bottom of a lake with v. slow sedimentation creating anaerobic, reducing conditions with a lot of decaying organic material.
- The fish have a skeleton and exoskeleton (bony scales) made of apatite $Ca_5(PO_4)_3(CI/F/OH)$ and hydroxy apatite $Ca_5(PO_4)_3(OH)$ and are a potential source of phosphate.
- It would seem that in this case, the uranium became incorporated during the fossilisation process, rather than at a later date

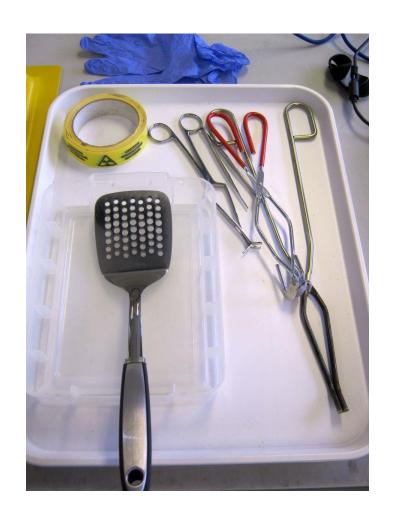
A big surprise!


I was not expecting these Oligocene (c. 30,000,000 years old) fossils (mammals, crocodiles, turtles, fish etc.) from the Isle of Wight to be radioactive, but they are! A few 10s of cps at surface

Dose-rate at 0cm <0.5 μ Sv/h , 0 μ Sv/h at 30cm.

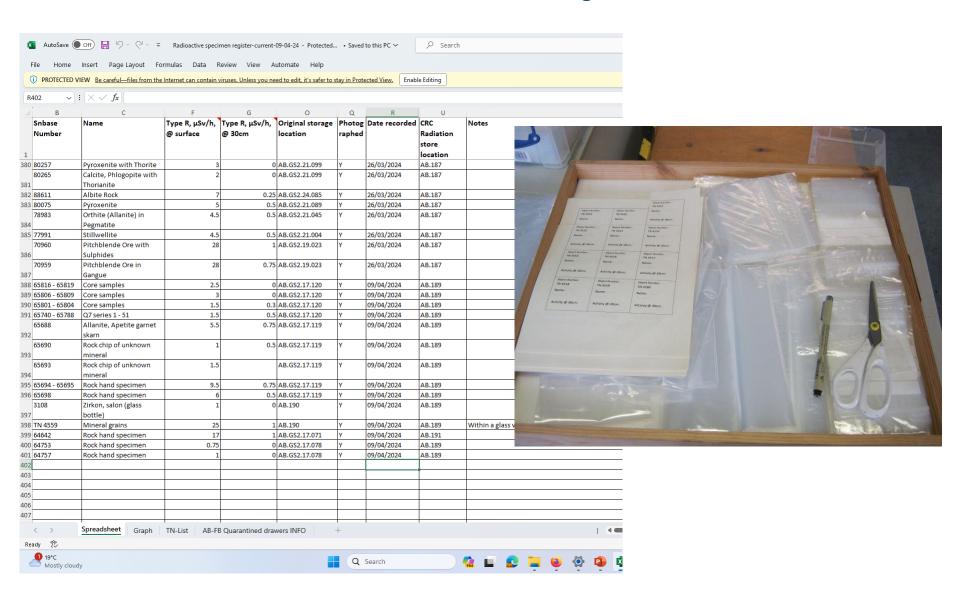
Current holdings of 'Actionable' NORMS

'Actionable' NORMS = $1 \mu Sv/h$ at 0cm (Type-R dose-rate monitor)

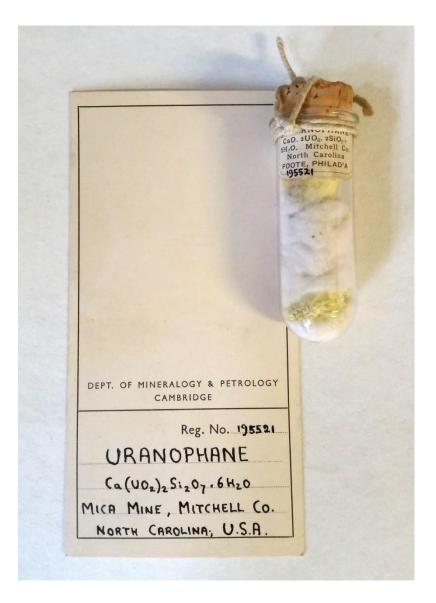

- To date 414 items (+ 90 suspects in pipeline)
- Torbernite/metatorbernite ($Cu(UO_2)_2(PO_4)_2 \cdot 12H_2O$) = 119
- Autunite $Ca(UO_2)_2(PO_4)_2 \cdot 10-12H_2O$ = 26
- Pitchblende/Uraninite UO₂ = 31
- Other (rocks, more obscure minerals etc.) = 143
- Unidentified = 54

Basic set-up for handling and recording NORMs

Type-R monitor for dose-rate, EP-15 for contamination monitoring


NORM Handling

Some tools for keeping specimens at a distance


Identification & Recording #2

Items are recorded in a spreadsheet and are issued a temporary ID if un-numbered

Crystal 'micromounts'

Glass tubes

Open card trays (and in this instance poor condition)

Most radioactive to date CAMSM 1947.20 Uraninite (UO $_2$) Dose-rate at 0cm 180 $\mu Sv/h$, 15 $\mu Sv/h$ at 30cm.

Danger

H300+H330 (92.68%): Fatal if swallowed or if inhaled [Danger Acute toxicity, oral; acute toxicity, inhalation]

H300 (97.56%): Fatal if swallowed [Danger Acute toxicity, oral]

H330 (97.56%): Fatal if inhaled [Danger Acute toxicity, inhalation]

H373 (100%): May causes damage to organs through prolonged or repeated exposure [Warning Specific target organ toxicity, repeated exposure]

H411 (97.56%): Toxic to aquatic life with long lasting effects [Hazardous to the aquatic environment, long-term hazard]

P260, P264, P270, P271, P273, P284, P301+P316, P304+P340, P316, P319, P320, P321, P330, P391, P403+P233, P405, and P501

(The corresponding statement to each P-code can be found at the GHS Classification page.)

Aggregated GHS information provided by 41 companies from 4 notifications to the ECHA C&L Inventory Each notification may be associated with multiple companies. Information may vary between notifications depending on impurities, additives, and other factors. The percentage value in parenthesis indicates the notified classification ratio from comp

Danger

H301: Toxic if swallowed [Danger Acute toxicity, oral]

- H315: Causes skin irritation [Warning Skin corrosion/irritation]
- H319: Causes serious eye irritation [Warning Serious eye damage/eye irritation]
- H335: May cause respiratory irritation [Warning Specific target organ toxicity, single exposure; Respiratory tract irritation]
- H341: Suspected of causing genetic defects [Warning Germ cell mutagenicity]
- H350: May cause cancer [Danger Carcinogenicity]
- H361: Suspected of damaging fertility or the unborn child [Warning Reproductive toxicity]
- H370: Causes damage to organs [Danger Specific target organ toxicity, single exposure]
- H372: Causes damage to organs through prolonged or repeated exposure [Danger Specific target organ toxicity, repeated

P203, P260, P261, P264, P264+P265, P270, P271, P280, P301+P316, P302+P352, P304+P340, P305+P351+P338, P308+P316, P31 (The corresponding statement to each P-code can be found at the GHS Classification page.)

Precautionary Statement Codes

WTF?

Collections Research Centre, Madingley Rise Cambridge

References

Anitha, J. K., Joseph, S., Rejith, R. G., & Sundararajan, M. (2020). Monazite chemistry and its distribution along the coast of Neendakara–Kayamkulam belt, Kerala, India. *SN Applied Sciences*, *2*, 1-18.

Dineley, D., & Metcalf, S. (1999). Fossil fishes of Great Britain. Geological Conservation Review Series, No. 16.

Gervilla, F., González Jiménez, J. M., Hidas, K., Marchesi, C., & Piña, R. (2019). Geology and metallogeny of the upper mantle rocks from the Serranía de Ronda

Gueriau, P., & Bertrand, L. (2015). Deciphering exceptional preservation of fossils through trace elemental imaging. *Microscopy Today*, *23*(3), 20-25.

Huston, D. L. (ed) An assessment of the uranium and geothermal potential of north Queensland

Tye, A. M., Milodowski, A. E., & Smedley, P. L. (2017). Distribution of natural radioactivity in the environment.