Risk Assessment Health
Health Safety Risk
Safety Risk Assessment
Risk Assessment Health

Chemical Safety Guidance

July 2025

Disposal of Chemical Waste

Occupational Health & Safety Service HSD018C (rev 5)

	mical Safety Guidance	1
1. In	troduction	2
1.1.	Definitions	2
1.2.	Duty of Care	
1.3.	Responsibilities	3
1.4.	Liquid Disposal via the Drains –	
2. N	on-hazardous Laboratory Waste	5
3. H	azardous Chemical Waste	6
3.1.	Introduction	6
3.2.	Waste Segregation and Classification	
3.3.	Containers	
3.4.	Labelling	
3.5.	Storage	7
3.6.	Emergencies	
4. H	azardous (Chemical) Waste Disposal Service	9
4.1.	Waste Disposal Applications	9
Apper	ndix 1 – UK 'Red List Substances' plus carbon tetrachloride	10
Apper	ndix 2 – Personal Protective Equipment (PPE)	11
Public	eation History:	12

University of Cambridge Guidance for the Disposal of Chemical Waste

This guidance applies to the correct disposal of **Hazardous Chemical Waste** from the University. It does not cover clinical / biologically contaminated laboratory waste or radioactive wastes. It has been produced to ensure that all aspects of waste segregation, packaging, labelling, storage, preparation for transport and transfer are in accordance with legislative requirements. It also takes account of the arrangements agreed with the Contractor who will collect and dispose of waste.

1. Introduction

Departments MUST define and segregate waste streams for waste arising as a result of their undertakings and NOT allow hazardous waste to enter their non-hazardous waste stream. Conversely incorrectly putting non-hazardous waste in the hazardous waste stream could unnecessarily burden the disposal procedure and result in 'excessive' incineration.

1.1. Definitions

Non-hazardous laboratory waste – A significant proportion of solid waste from a laboratory is likely to consist of non-hazardous waste. Items such as paper, tissues, disposable gloves, packaging, rinsed plastic-ware, rinsed glass-ware and rinsed out chemical bottles (rinsed with at least three times and their labels defaced) are usually considered to be non-hazardous, see below.

Hazardous chemical waste - includes:

- Wastes classified as 'hazardous' in The Hazardous Waste Regulations 2005 amended 2016 (Schedules 1 and 2).
- Other wastes which display one or more of the hazardous properties (HP1 to HP15) listed in the Regulations (see the Environment Agency Guidance WM3).

Waste is 'legally' defined as chemically hazardous if it contains hazardous chemicals above the numerous thresholds detailed in WM3 (see the further reading list on page 10).

However, for simplicity, and in the interests of safety, this guidance recommends three maximum hazardous chemical waste thresholds, namely-

1. Substances at a total concentration of ZERO if classified as:

- Flammable with a flash point ≤ 60 °C (gases / organic solvents etc)
- Self, Water or Air reactive (H250/251, H260/261)
- Prescription only medicine (POMs)
- Oil / heavy metals / red listed substances (Appendix 1)
- Persistent Organic Pollutants (see WM3)

2. Substances at an <u>absolute maximum total concentration</u> of ≥ 0.1 % if classified as:

- Very toxic
- Carcinogenic; category 1, 2 (or 3 in old CHIP category)
- Mutagenic; category 1, 2 (or 3 in old CHIP category)
- Reproductive Toxin; category 1, 2 (or 3 in old CHIP category)
- Corrosive substances causing severe burns
- Other Ecotoxins
- Unknowns *

3. Substances at a total concentration of ≥ 1 % if classified as:

- Toxic
- Corrosive substances causing burns (see above)
- Eye, skin and respiratory irritants
- Harmful

^{*} Chemical substances arising from research and development or teaching activities which are not identified and/or are new and whose effects on humans and/or the environment are 'unknown' (e.g. laboratory residues, etc.) should be regarded as hazardous and subject to a threshold of ≥ 0.1 % as above, unless substantive demonstrable evidence indicates otherwise.

As far as this guidance is concerned these figures are to be used as maximum values of what level would be considered as 'acceptable residual' contamination, BUT always subject to YOUR risk assessment for the particular chemicals you are using.

Information on the correct disposal route for hazardous chemical waste is given in Section 3.

1.2. Duty of Care

The Environmental Protection Act includes a 'Duty of Care' which requires all persons involved in the handling of waste, including producers, to take reasonable and appropriate measures to ensure that:

- Waste is only kept, treated, deposited or disposed of in accordance with a waste management licence or other authorisation
- Waste does not escape from the control of the holder
- Waste is only transferred to authorised persons such as registered waste carriers or licensed disposal operations permitted to accept that type of waste
- All transfers / movements of the waste are accompanied by an adequate written description of the waste which will allow waste to be identified and subsequently handled correctly

The duty begins with the person who generates the waste and it cannot be delegated to others. This duty is legally enforceable and breaches of it can lead to criminal prosecution of individuals and the University.

Consequently, the University (its staff and students) must make every effort to categorise, segregate and contain waste according to standards imposed by current legislation and best practice. The Duty of Care for pollution control, and the revision of the associated Regulations, imposes strict management and documentation procedures. These requirements can only be met by following a scheme of management based on the strict segregation of hazardous wastes from the greater bulk of less harmful material which arises in the University. Mixing hazardous wastes should be avoided at all times.

In summary, waste must be properly described and appropriate handling precautions noted. The description must be sufficient to ensure that subsequent holders of the waste are able to avoid mishandling it. The description should contain information about the source of the waste, what it is made up of, how it is produced and details of any special problems which may be encountered by handling the waste. Waste containers must be correctly labelled and robust and chemically resistant.

1.3. Responsibilities

Each Head of Department / Institution is responsible for:

- Overseeing the management of hazardous chemical and laboratory wastes in their department and for ensuring departmental compliance with the Duty of Care
- Ensuring that local departmental waste management procedures are prepared in accordance with this guidance and risk assessed
- Ensuring integration of waste management and Health and Safety arrangements
- Appointing a departmental Chemical Waste Co-ordinator where appropriate to provide a local level of advice

Whilst Heads of Departments / Institutions may delegate authority to manage waste, they remain legally responsible, as with all Health and Safety matters.

Research Supervisors are responsible for:

- Day to day supervision of operating procedures relating to waste arising within their laboratories
- Ensuring compliance with departmental waste management procedures and risk assessments

Individuals are responsible for:

- Planning work carefully to minimise raw material consumption and waste production
- Reusing materials wherever practicable
- Recovering and recycling materials wherever practicable

- Identifying the intrinsic hazards of the waste produced and identifying the appropriate waste disposal route and disposing of waste accordingly
- Segregating, containing and appropriately labelling all waste in order to avoid problems of mixing incompatible wastes and to avoid spreading hazards in the work area
- Bringing to the attention of the Departmental Safety Officer or other nominated person(s) any non-conformance in relation to this policy / departmental waste management procedures
- Keeping the chemical inventory 'up-to-date' when chemicals are disposed of. (Note: the inventory can also be used to label and track waste containers).
- Ensuring that ALL unwanted chemicals, samples, accumulations of materials etc, including those in cupboards, fridges and freezers, are disposed of correctly at the end of their studies / employment with the University

It should be noted that a written chemical risk assessment (COSHH / DSEAR) for handling and transporting hazardous waste within departments must be undertaken and held by the department.

1.4. Liquid Disposal via the Drains

The foul sewer MUST NOT be viewed as the primary disposal route for waste chemicals and the thresholds listed above should NOT be arbitrarily applied to liquid wastes for drain disposal. The University operates a 'Zero Hazardous Chemicals to Drains Policy' as far as is reasonably practicable.

Most importantly this means absolutely NO:

- Prescribed substances i.e. items appearing on the UK Red List¹, including their salts (see Appendix 1), e.g. Mercury / mercury compounds, Cadmium / cadmium compounds etc.
- Calcium carbide
- Oil, petroleum spirit and other volatile or flammable organic solvents
- Cyanides
- Waste liable to form viscous or solid deposits on or in any part of the sewerage system
- Ethidium bromide solutions (as DNA stain or otherwise)
- Other DNA stains; without express specific written permission for that stain from Anglian Water
- Mineral and synthetic oils
- Substances of a nature likely to give rise to fumes or strong odours
- Halogenated hydrocarbons
- Halogen substituted phenolic compounds
- Thiourea and its derivatives
- Solutions containing
 - Antimony
 - Arsenic
 - Chromium (VI)
 - Selenium
 - Tellurium
- Organohalogen, organophosphorus or organonitrogen pesticides, triazine herbicides, any other biocides
- Poisonous organosilicon compounds, metal phosphides and elemental phosphorus
- Regulated Poisons (see Safety Office website)
- Spent photographic solutions

Note: this is not by any means an exhaustive list. NB: do NOT dispose of any eco-toxin via the drains, always check the latest safety data sheets!

None of the above may be discharged <u>under any circumstances</u> to foul sewer via any University sink, whether in a laboratory, in a fume cupboard or otherwise. Remember what the University discharges to drains today, may be someone's drinking water next week!

¹ The UK 'Red List' lists 23 of the most dangerous substances (plus carbon tetrachloride) which have been selected for priority control including through the system of integrated pollution control. Red list substances are toxic, do not or are very slow to degrade in water and are likely to accumulate in living organisms. They are listed in Schedule 1 of the Trade Effluent (Prescribed Processes and Substances) Regulations 1989.

Always check, environmental hazards / hazard Statements / Precautionary statements prior to disposal to foul sewer of any substance. The environmental GHS Hazard Statements which must NOT be discharged to the foul sewer are:

- H400 Very toxic to aquatic life.
- H410 Very toxic to aquatic life with long lasting effects.
- H411 Toxic to aquatic life with long lasting effects.
- H412 Harmful to aquatic life with long lasting effects.
- H413 May cause long lasting harmful effects to aquatic life.

Sometimes these may be accompanied by the 'dead tree and fish symbol'.

GREAT CARE must be taken to ensure that <u>NO</u> substance having an environmental risk phrase (i.e. an eco-toxin) is discharged to the foul sewer.

Exceptions:

The following can only be disposed to foul sewer with copious amounts (large quantities) of water:

- Aqueous solutions containing less that 0.01% v/v organic solvents (excluding chlorinated solvents). NB: This exception must NOT be used as an excuse to 'dilute' large quantities of organic solvents down the drains.
- Dilute acid[¥], alkali or ammonia solutions (less than 10% v/v)
- Harmless soluble inorganic salts (including drying agents e.g. CaCl₂, MgSO₄, Na₂SO₄, P₂O₅)
- Hypochlorite solutions from destroying cyanides, phosphines, etc
- Bleach and other 'household cleaning agents' acceptable for drain disposal

In <u>some cases</u> it may be safer to very carefully and substantially dilute small quantities of nitric acid, by adding the acid to the water slowly with stirring, before disposing of the diluted solution with substantial amounts of water into a pre-rinsed sink with a sink trap extensively pre-flushed with water, rather than attempting to store it, BUT always seek advice first! As ever PPE, especially including eye/face protection must be used.

Further guidance on discharge to foul sewer can be found on the Sustainability Office website.

2. Non-hazardous Laboratory Waste

General solid laboratory and workshop waste having low levels of chemical contamination are normally considered as non-hazardous. Examples include gloves, rinsed plastic-ware, rinsed glassware, paper towels / tissues, agarose gels, etc. These items can be disposed of via the general trade waste route in black bin bags (doubled bagged). Waste glass (including broken glassware and redundant bottles) should be washed thoroughly or treated to neutralise any remaining chemicals then washed and labels removed / defaced before being placed in a cardboard box and disposed of as general trade waste.

Where residual chemical contamination of an item is above the statutory / University thresholds (see 1.1 above), or if the contamination constitutes a serious risk to health as determined by your risk assessment, the waste MUST be disposed of as hazardous chemical waste.

Note: particular care must be taken when risk assessing the disposal of a small number of 'extremely toxic chemicals' and carcinogens, particularly those classified as very toxic via absorption, where a potentially 'harmful acute dose' could conceivably be below the legal threshold for 'very toxic chemicals' of $\geq 0.1\%$. The key issue being inadvertent post disposal contamination of an unsuspecting individual.

For further information contact the University Chemical Safety Adviser at the Safety Office.

^{*} As an example: Acetic Acid is corrosive, H314, and therefore subject to a hazardous waste threshold of 5%, yet household vinegar is ~ 6% acetic acid and undiluted is a 'hazardous substance'. Non-the-less when diluted with copious amounts of water reasonable quantities of acetic acid can be disposed of via the foul sewer. However, this does not mean that it would be appropriate to dispose of significant quantities of glacial acetic acid via the sewer and glacial acetic acid is also a flammable organic liquid.

3. Hazardous Chemical Waste

3.1. Introduction

Hazardous chemical waste includes: oil; solvent wastes; reaction by-products; washings; chemicals that are out of date or withdrawn from use; unwanted materials; pesticides; water treatment chemicals including biocides; oils and 'unknown' substances. It also includes any chemically contaminated equipment, chemically contaminated containers or sharps etc that can't be safely decontaminated **and ANY NEEDLES whether contaminated with chemicals or not**.

Remember: Liquid wastes should NOT be disposed of via the general trade waste route i.e. NOT placed in contractors bins; for appropriate disposal routes for liquids see section 1.4 above.

3.2. Waste Segregation and Classification

Hazardous chemical waste must be segregated with due regard to chemical compatibility / properties to prevent the likelihood of reactions occurring in storage or transit, which could cause danger to persons or property, or environmental pollution. In general the following incompatible chemicals must be segregated:

- Mineral acids, especially oxidising mineral acids such as nitric acid, must be separate from organic acids such as acetic acid
- Acids separate from cyanides, sulphides and alkalis
- Halogenated solvents separate from non-halogenated solvents
- Pyrophoric substances i.e. substances which are spontaneously flammable in the presence of air and / or moisture e.g. lithium aluminium hydride, butyl lithium, sodium metal, white phosphorus
- Water and air reactive materials
- Anything containing iodine or even suspected of containing iodine must be segregated and very clearly identified because of limitations on the quantity that can be incinerated.
- All oxidisers must be segregated. Care must be taken to ensure that oxidisers do not come into contact with organic materials and mineral acids
- Wastes that cannot be incinerated such as mercury and cadmium.

Chemicals are divided for the purpose of transport into the classes detailed in Table 1. Waste should be segregated according to the transport classes given in Table 1 as far as possible with due regard to the common incompatibilities detailed above. In case of difficulties in identifying the relevant hazard classifications, refer to the manufacturer's safety data sheet (SDS) or Sigma Aldrich catalogue/ website which contains classification data (RID/ADR, X – where X relates to the class).

Further information is available from the University Chemical Safety Adviser.

Classification Code	Classification
2.1	Flammable gas
2.2	Non-flammable non-toxic gas
2.3	Toxic gas
3	Flammable liquid
4.1	Flammable solid
4.2	Spontaneously combustible substance
4.3	Substance which in contact with water emits flammable gas
5.1	Oxidising substance
5.2	Organic peroxide
6.1	Toxic substance
8	Corrosive substance
9	Miscellaneous dangerous goods

Table 1: Hazard classifications for transport

3.3. Containers

Containers must be suitable for the type of waste. The following guidelines should be followed:

- Glass bottles can be used for many chemicals EXCEPT hydrofluoric acid waste which may need a specialist waste container as not all 'plastics' are suitable for hydrofluoric acid.
- Plastic bottles are suitable for acids and alkalis. Do not put aggressive solvents such as ether
 or dichloromethane, or mixtures containing aggressive solvents, in plastic containers unless the
 container is made of high-density polyethylene (HDPE) and is known to be suitable
- Steel drums are suitable for non-acidic organic solvents, neutral aqueous solutions and oils but are NOT suitable for acids or alkalis
- Containers designed for solids MUST NOT be used for liquids
- Needles that were used solely with chemicals should be rinsed where safe and practicable to
 do so, segregated from other hazardous waste and disposed of in sharps bins that have had
 any reference to 'biological' material removed from the label.

Note - Malodorous compounds should be disposed of in glass bottles, the top of which should be wrapped in parafilm and secondary containment is recommended.

The integrity of the container MUST BE checked prior to use or disposal. It must be:

- Sound i.e. have no cracks, chips or punctures. Remember, old plastic containers and lids may have degraded and become fragile, especially if exposed to sunlight for long periods.
- Securely fastened / sealed containers without secure lids (e.g. stoppered flasks etc) will NOT be accepted for disposal unless in an appropriate secondary container packed with absorbent.
- · Leak proof. Containers that show signs of leakage will NOT be accepted for disposal

CARE is necessary when packaging waste in order to prevent, or at least minimise, the likelihood of leakage if a container is dropped, punctured or split. In some cases (e.g. a significant quantity of a highly toxic or carcinogenic chemical in a glass bottle) suitable secondary containment may be advisable. Appropriate spill kits MUST be available in waste chemical storage areas.

CARE must also be taken to ensure that there is no external contamination of the container e.g. from leaks or spillages. Where leakage or external contamination is suspected, containers MUST be sealed in a suitable secondary container, appropriate to the nature of the chemical, and packed with absorbent.

Containers MUST NOT be overfilled. Winchesters should be filled to the bottom of the curving neck at the very most and NO higher:

The air space above the liquid, known as 'ullage', allows for liquid volume and pressure changes in the vapour above the liquid as the temperature changes. **Caps should not be over tightened.** If the Winchester contains a highly or extremely flammable liquid they should not be filled above 3/4 full.

It should be noted that appropriate personal protective equipment (e.g. lab coat, safety glasses, gloves – see Appendix 2) should be worn when handling chemical waste as identified in the chemical hazard (COSHH) risk assessment.

3.4. Labelling

Containers MUST be clearly labelled with full details of contents and the name of the person transferring the waste. Major components MUST be listed and where possible the original container should be used as this gives valuable identification and safety information. Where the original container is used, the label should not be covered or obscured. **However, it is important to deface or preferably remove any labels on packaging which are incorrect.** Where secondary containment is used, the outer container MUST be labelled with the contents and all relevant information.

3.5. Storage

Departments MUST ensure that adequate facilities are provided to hold waste pending its collection. This normally entails the designation of a Departmental Hazardous Waste Store.

Containers of waste chemicals should not be allowed to accumulate in laboratories and other work areas. When a waste container is filled, arrangements should be made to transfer it to the Departmental Hazardous Chemical Waste Store as soon as is practicable. Care must be taken to ensure that waste is clearly segregated according to hazard classification within the store and that combustible material is not allowed to accumulate.

Departmental Hazardous Chemical Waste Stores may be rooms within buildings, stand alone buildings or proprietary 'containers'. All types of store should:

- Be constructed of suitable fire resisting or non-combustible materials
- Have fire extinguishing apparatus close by, identified by appropriate signage
- Have an emergency eye wash station close by, identified by appropriate signage
- Where possible be located away from rain/surface water drains or unsealed man-hole covers; where not possible a means of preventing spillages entering these drains must be available.
- Where applicable have unobstructed corridors at least 1.1 metres wide
- Be inaccessible to the public. External stores and the outside doors of internal stores should be robust and kept locked
- Have a sign indicating 'Hazardous Chemical Waste Store, No Unauthorised Access', or similar and additional signs indicating which hazards may be encountered e.g. Flammable Liquids
- Incorporate fire protection appropriate to the hazards posed by the substances stored inside. Note that it may be necessary to have intrinsically safe lighting or even fire suppression systems etc (further information on fire protection is available from the University's Fire Safety team)
- Have adequate passive or intrinsically safe mechanical ventilation, to prevent the build-up of hazardous vapours and flammable vapours where flammable liquids or gases are stored
- Be designed to contain leaks from containers by either sloping the floor away from the door and/or by providing a liquid proof sill across the door opening. Liquid spillages should be prevented from running into areas where incompatible materials are stored. This may be achieved by utilising in-rack bunds or drip trays
- Be bunded to prevent leakages or hazardous spills escaping to drains
- Be equipped with an appropriate emergency response kit / spill kit that reflects the intrinsic hazards of the substances stored within the store.

Outdoor storage areas should be bunded to prevent leakages or spills escaping to drains. The bund should enclose a volume which is at least 110% of the capacity of the largest container stored there, or 25% of the total volume stored, whichever is the greater.

Note - A spillage of waste must be cleaned without delay. Hazardous waste spillages must not be left unattended or unsecured.

3.6. Emergencies

In case of an inappropriate discharge to either foul sewer or surface water drains:

- During office hours immediately contact the University Environmental Sustainability Team (Environment Manager 01223 763574), or the University Radiation Protection Officer (01223 666354) for incidents related to radioactive substances. The relevant Officer will notify the appropriate authority.
- Outside of office hours contact the University Security Control Centre 24/7 on 01223 331818 or dial 101 from the internal network who can escalate the incident as needed.

.

4. Hazardous (Chemical) Waste Disposal Service

To arrange for a collection by the University's contractor, please refer to this <u>guidance document</u>. You will need to fill-out a <u>pre-acceptance form</u> and email the completed form to <u>UK.UoC@tradebe.com</u>. Once your request has been processed, the University's contractor will email you to arrange a time and date for collection.

4.1. Waste Disposal Applications

It should be noted that the following items CANNOT be disposed of via the Hazardous Chemical Waste Disposal Service:

- Animals and animal bedding
- Class 1 Explosives e.g. gun cartridges NB chemical explosives (e.g. nitroglycerine) can be disposed of via the Hazardous Chemical Waste Disposal Service but they MUST be chemically denatured PRIOR to disposal
- Clinical waste and anything containing pathogenic organisms
- Controlled drugs NB controlled drugs can be disposed of via the Hazardous Chemical Waste Disposal Service but they MUST be chemically denatured PRIOR to disposal
- Radioisotopes and material contaminated with radioisotopes
- Uranium and Thorium salts or material contaminated with their salts

For further advice on mixed wastes, i.e. radioactive and chemical etc, please contact the Safety Office.

Applications for the disposal of hazardous waste must be submitted on the correct form which available on the Safety Office and Procurement websites. Please note that ALL fields on the form MUST be completed. An accurate description of the waste including its hazardous components and relative concentrations is required. A contact name is also required. This need not necessarily be the person generating the waste as the list may be a composite one detailing hazardous waste from different areas. However, all containers MUST be clearly labelled with full details of contents and the name of the originator of the waste or where this is not possible, the name of the person transferring the waste. Waste contractors are provided with the information supplied by departments and the collection of waste is arranged by the contractor, therefore contact details must be sufficiently clear to enable them to do so.

The disposal of 'unknowns' is costly as analysis to identify the appropriate disposal route may be required and Departments may be charged for this. Items should only be labelled as 'unknown' with a unique numbered code (to allow it to be identified through the waste stream) after extensive enquiries have been made as to what the 'unknown' may be. Where possible, 'unknowns' should be classified by functional chemical group. Simple categorisation may be adequate, i.e. stable, non-flammable, acidic, aqueous solution could suffice.

It is NEVER acceptable to pour 'unknowns' down the drain!!!

Appendix 1 – UK 'Red List Substances' plus carbon tetrachloride

1,2-dichloroethane
Aldrin (and isomer isodrin), dieldrin, endrin

Azinphos-methyl

Atrazine

Cadmium (and its compounds)

Carbon tetrachloride*

DDT (all isomers)

Dichlorvos

Dieldrin

Endosulfan

Endrin

Fenitrothion

Gamma-hexachlorocyclohexane (Lindane)

Hexachlorobenzene

Hexachlorobutadiene

Malathion

Mercury (and its compounds)

Pentachlorophenol (and its compounds)

Polychlorinated biphenyls

Simazine

Tributyltin compounds

Trichlorobenzene (all isomers)

Trifluralin

Triphenyltin compounds

The UK red list contains 23 substances, the presence of which in the environment is of particular concern.

^{*} Carbon tetrachloride does not appear on the UK Red List but is a prescribed substance listed in Schedule 1 to the Trade Effluent (Prescribed Processes and Substances) (Amendment) Regulations 1990 which comprises of the UK Red List substances plus carbon tetrachloride.

Appendix 2 – Personal Protective Equipment (PPE)

The following PPE should be worn when handling chemical waste (as appropriate):

PPE	Туре
Gloves	Nitrile or rubber.
Goggles / Safety glasses / Face shield	Glasses conforming to BS EN 166 (formerly BS 2092), having Grade F (formerly Grade 2) impact specification and with side shields.
	Over-glasses conforming to BS EN 166 which will fit over ordinary prescription glasses.
	Protective goggles conforming to BS EN 166, having Grade B (formerly Grade 1) impact specification, which can be worn on their own or, if necessary, over ordinary prescription glasses.
	Face shields which conform to BS EN 166, having Grade B impact specification.
Footwear	Footwear that adequately covers the feet and offers protection against spillages and falling objects should be worn.
Lab coat / overalls	Cotton or polycotton, 'Howie' or double overlap type preferred.
Respiratory protective equipment (RPE)	Wherever face masks and respirators are required as an additional protection measure for potential exposures to organic vapours or airborne contaminants etc then a face fit test should be undertaken by the user for the make and model of mask being used.
	RPE that contains filtering media that can protect against dusts must be rated to BS EN 149.
	Re-usable equipment which includes half masks and full-face masks (where the half mask covers only the nose and mouth), manufactured to BS EN 405, 1993, or BS EN 140. The full-face mask protects the eyes as well, manufactured to BS EN 136.

Publication History:

Published 2003

Revised 2006 (rev1)

Revised 2012 (rev2)

Revised 2016 (rev3)

Revised 2020 (rev4)

Revised 2025 (rev5)

Safety Office
Greenwich House
Madingley Road
Cambridge CB3 0TX
Tel: 01223 333301
Fax: 01223 330256
safety@admin.cam.ac.uk
www.safety.admin.cam.ac.uk/
HSD018C (rev 5)
© University of Cambridge